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Abstract
In this paper, through generalizing the 2 × 2 matrix Ablowitz–Kaup–Newell–
Segur linear eigenvalue problem to the 2N ×2N case, a new Lax pair associated
with the multi-component modified Korteweg–de Vries equations is derived in
the form of block matrices. Furthermore, the Darboux transformation is applied
to this integrable multi-component system, and the n-times iterative potential
formula is presented by applying the Darboux transformation successively.
This formula enables us to construct a series of explicit solutions of multi-
component modified Korteweg–de Vries equations. In illustration, starting
from the zero background, we construct the multi-soliton solutions by
performing the symbolic computation.

PACS numbers: 05.45.Yv, 02.30.Ik, 02.30.Jr, 02.70.Wz

1. Introduction

The soliton theory and nonlinear evolution equations (NLEEs) are of current importance
in many fields of science and technology [1, 2], and hence there has been considerable
interest in investigating the complete integrability of the NLEEs [3]. Integrable evolution
equations are known to possess many remarkable properties such as the soliton solutions, an
infinite number of conservation laws, symmetries and Hamiltonian structures [3–5], and they
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can be expressed as the compatibility conditions of linear eigenvalue equations (Lax pair)
which usually include the spatial part and temporal part [4]. Since the inverse scattering
transform (IST) was developed to solve the initial value problem for the Korteweg–de Vries
(KdV) equation [6], along with the successful application to the nonlinear Schrödinger (NLS)
equation [7] and modified KdV (mKdV) equation [8],

ut + 6uux + uxxx = 0, (1)

iqt + qxx + 2|q|2q = 0, (2)

ut + 6u2ux + uxxx = 0, (3)

the Lax pair has been playing an important role in determining whether a given NLEE is
integrable and obtaining the explicit solutions of associated integrable equation. Based on the
IST method, the Ablowitz–Kaup–Newell–Segur (AKNS) system provides a general scheme
to construct the Lax pairs for a large class of physically interesting NLEEs and solve their
initial value problems in an extremely systematic way [9].

Many one-component NLEEs can be extended to the versions of multi-component NLEEs.
For example, the above KdV, NLS and mKdV equations can be generalized to the following
multi-component cases:

uj t
+ 6

(
N∑

k=1

uk

)
uj x

+ uj xxx
= 0, (j = 1, 2, . . . , N), (4)

iqj t
+ qj xx

+ 2

(
N∑

k=1

|qk|2
)

qj = 0, (j = 1, 2, . . . , N), (5)

uj t
+ 6

(
N∑

k,l=1

Cklukul

)
uj x

+ uj xxx
= 0, (j = 1, 2, . . . , N). (6)

The vector generalizations of soliton equations have a significant impact on both theory
and phenomenology in nonlinear sciences [10–14]. Mathematically speaking, the multi-
component equations admit Painlevé property, Hamiltonian structures, infinite conserved
quantities and soliton solutions [15–17]. Moreover, the Lax pairs associated with the multi-
component equations are very closely related to the reductions of algebraic group structures
[15, 17]. Important physical applications of multi-component equations have received a great
deal of attention due to their appearance as models in various areas of physics ranging from
fluid mechanics, nonlinear optics to Bose–Einstein condensates and field theories [18–22].
In addition, multi-component equations possess abundant solution structures and appealing
soliton collision phenomena [18–20]. In recent studies, the Lax pairs of some multi-component
equations can be derived by extending the 2 × 2 AKNS formulation to the N × N case
[22, 23]. From the viewpoint of algebraic properties, [15, 17] have investigated systems
(4)–(6) in (1+1) dimensions associated with Hermitian symmetric spaces. It turns out that
system (6) has an infinite number of conservation laws and Hamiltonian structures, and can
be solved by the IST method [23, 24].

The Darboux transformation method has been a very effective tool in soliton theory to
construct the exact analytical solutions of integrable NLEEs [25–29]. The main idea of this
method is to keep the linear eigenvalue problems associated with integrable systems invariant
after the appropriate gauge transformation, so that the relationships between the new and
original eigenfunctions and potentials can be built. Then, the new solutions of integrable
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equations can be obtained by solving the linear equations with a trivial solution. Moreover,
the advantage of Darboux transformation lies in not only that the solutions are expressible in
terms of the Wronskian determinant [25] or Vandermonde-like determinant [30], but that the
iterative algorithm is purely algebraic and can be implemented on the symbolic computation
system. The effectiveness of this approach has been demonstrated in many integrable one-
component NLEEs like the KdV and NLS equations [25, 26].

In recent years, researchers have devoted their attention to the application of the
Darboux transformation to integrable multi-component systems regarding the 3-waves
resonant interaction equations [31], and coupled NLS equations [20, 32, 33]. With the use
of the explicit solutions obtained from the Darboux transformation, the nonlinear phenomena
occurring in various fields of physical and engineering sciences can be well illustrated.
For example, the resonant interaction of nonlinear waves, elastic and inelastic collisions
between solitons and boomeronic phenomenology have been recently found and investigated in
[20, 31]. However, when the Darboux transformation is applied to the Lax pair associated with
the multi-component systems, the serious problem encountered is how to make the reduction
and constraints among original potentials invariable by constructing the appropriate gauge
transformation. As far as we know, although there is not a systematic effective method to deal
with this problem, the Darboux transformation of some integrable multi-component systems
can be constructed with the help of some techniques [20, 31–33].

The purpose of the present work is devoted to making a further investigation on the
integrability aspects and multi-soliton solutions of multi-component mKdV equations, i.e.,
system (6). Through extending the 2 × 2 matrix AKNS linear eigenvalue problem to the
2N × 2N case, we will derive a new Lax pair associated with system (6) in the form of
block matrices. Furthermore, based on the obtained Lax pair, we will apply the Darboux
transformation method to system (6), and generate the multi-soliton solutions with the purely
algebraic iterative algorithm.

2. Lax pairs and reductions

In [23], it has been pointed that system (6) can be transformed into the following normalized
multi-component mKdV equations:

uj t
+ 6

(
N∑

k=1

εku
2
k

)
uj x

+ uj xxx
= 0, εk = ±1, (j = 1, 2, . . . , N). (7)

In this section, based on the matrix-form inverse scattering formulation [23], we consider
the 2N × 2N linear eigenvalue problem associated with system (7)

�x = U� = (λJ + P)�, (8)

�t = V � = (λ3V0 + λ2V1 + λV2 + V3)�, (9)

where � = (ψ1, ψ2, . . . , ψ2N )T (the superscript T denotes the vector transpose) is the vector
eigenfunction, λ is the spectral parameter independent of x and t, the block matrices J, P, V0,

V1, V2, V3 are given by

J = i

(−I O

O I

)
, P =

(
O Q

R O

)
, V0 = 4i

(−I O

O I

)
, V1 = 4

(
O Q

R O

)
,

(10)

V2 = 2i

(−QR Qx

Rx RQ

)
, V3 =

(
QxR − QRx −Qxx + 2QRQ

−Rxx + 2RQR RxQ − RQx

)
, (11)

3
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where I is the 2N−1 × 2N−1 identity matrix, Q and R are 2N−1 × 2N−1 block matrices, and O
is a 2N−1 × 2N−1 zero matrix. From the compatibility condition of equations (8) and (9), i.e.,
the zero-curvature equation

Ut − Vx + [U,V ] = O, (12)

where the brackets denote the commutator of two matrices, the coupled matrix mKdV equations
can be obtained

Qt − 3QxRQ − 3QRQx + Qxxx = O, (13)

Rt − 3RxQR − 3RQRx + Rxxx = O. (14)

Under the reduction

R = εQT , ε = ±1, (15)

Equations (13) and (14) reduce to the matrix mKdV equation,

Qt − 3ε(QxQ
T Q + QQT Qx) + Qxxx = O. (16)

The multi-component mKdV equations (7) can be derived from this single matrix mKdV
equation (16).

For a particular case Q ≡ u, equation (16) reduces to the standard mKdV equation (3).
If Q is respectively taken as the following forms

Q2 =
(

u1 u2

−u2 u1

)
2×2

, (17)

Q3 =

⎛⎜⎜⎝
u1 u2 u3 0

−u2 u1 0 u3

−u3 0 u1 −u2

0 −u3 u2 u1

⎞⎟⎟⎠
4×4

, (18)

Q4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 u2 0 0 u3 0 u4 0
−u2 u1 0 0 0 u3 0 u4

0 0 u1 u2 −u4 0 u3 0
0 0 −u2 u1 0 −u4 0 u3

−u3 0 u4 0 u1 −u2 0 0
0 −u3 0 u4 u2 u1 0 0

−u4 0 −u3 0 0 0 u1 −u2

0 −u4 0 −u3 0 0 u2 u1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
8×8

. (19)

It is a direct calculation to verify that the two-component, three-component and four-
component mKdV equations of system (7) are obtained with the substitution of expressions
(17)−(19) into equation (16), respectively.

The general expression of QN is a 2N−1 × 2N−1 block matrix

QN =
(

Q1 Q2

Q3 Q4

)
, (20)

where Qj (j = 1, 2, 3, 4) are all 2N−2 × 2N−2 square-block matrices, Q1 is a block diagonal
matrix, while Q3 = −QT

2 , Q4 = QT
1 . Q1 and Q2 are given by

Q1 =

⎛⎜⎜⎜⎜⎜⎝
A1

A1
O

. . .O A1

A1

⎞⎟⎟⎟⎟⎟⎠ , Q2 =
(

B1 B2

B3 B4

)
, (21)
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where Q2 has the same identities as QN , i.e., Bj are all square-block matrices, B3 =
−BT

2 , B4 = BT
1 , while B1 and B2 are expressible in the form

B1 =

⎛⎜⎜⎜⎝
A2

A2
O

. . .O A2

⎞⎟⎟⎟⎠, B2 =

⎛⎜⎜⎜⎜⎜⎝
A3 O · · · AN−1 AN

O A3 · · · −AN AN−1

...
...

. . .
...

...

−AN−1 AN · · · A3 O

−AN −AN−1 · · · O A3

⎞⎟⎟⎟⎟⎟⎠, (22)

A1 =
(

u1 u2

−u2 u1

)
, O =

(
0 0
0 0

)
, Aj =

(
uj+1 0

0 uj+1

)
,

(j = 2, 3, . . . , N − 1). (23)

By a direct computation, one can easily check that system (7) can be derived from
equation (16) by straightforward substitution of expressions (20)−(23). It should be noted
that the above Lax pair expressed by the 2N × 2N matrix representation is different from that
form in [23]. By means of such a matrix expression, the Darboux transformation of system
(7) can be further constructed to obtain a series of explicit solutions.

3. Darboux transformation

In this section, our concern is to construct the Darboux transformation of system (7). First of
all, we consider the two-component mKdV equations including the self-focusing type case

u1t + 6
(
u2

1 + u2
2

)
u1x + u1xxx = 0,

u2t + 6
(
u2

1 + u2
2

)
u2x + u2xxx = 0,

(24)

and the self-defocusing case

u1t − 6
(
u2

1 + u2
2

)
u1x + u1xxx = 0,

u2t − 6
(
u2

1 + u2
2

)
u2x + u2xxx = 0.

(25)

We introduce the following gauge transformation

�̃ = D� = (λI − S)�, (26)

where �̃ and � are both four-dimensional vector eigenfunctions, I is a 4 × 4 identity matrix,
D is called the Darboux matrix, while �̃ also satisfies the same linear eigenvalue problems (8)
and (9) with P, V0, V1, V2 and V3 replaced by P̃ , Ṽ0, Ṽ1, Ṽ2 and Ṽ3, respectively,

�̃x = Ũ�̃ = (λJ + P̃ )�̃, (27)

�̃t = Ṽ �̃ = (λ3Ṽ0 + λ2Ṽ1 + λṼ2 + Ṽ3)�̃. (28)

The compatibility condition Ũt − Ṽx + [Ũ , Ṽ ] = O also gives rise to two-component mKdV
equations (24) and (25). Thus, the Darboux matrix D is required to satisfy

Dx = ŨD − DU, (29)

Dt = Ṽ D − DV, (30)

5
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from which we can directly compute out

Ṽ0 = V0, (31)

Ṽ1 = V1 + [V0, S], (32)

Ṽ2 = V2 + [V1, S] + [V0, S]S, (33)

Ṽ3 = V3 + [V2, S] + [V1, S]S + [V0, S]S2, (34)

P̃ = P + [J, S], (35)

Sx = [P, S] + [J, S]S, (36)

St = [V3, S] + [V2, S]S, +[V1, S]S2 + [V0, S]S3. (37)

The central task is to construct the matrix S based on the solutions of the linear eigenvalue
problems (8) and (9). However, this problem is not easy to deal with, as the reduction
R̃ = εQ̃T (ε = ±1) and constraints among potentials in Q̃ and R̃ should be consistent with
the original reduction R = εQT (ε = ±1) and constraints in Q and R after the Darboux
transformation. We take the matrix S of the form

S = H�H−1, (38)

with

H = (h1, h2, h3, h4), � = diag(λ1, λ2, λ3, λ4), (39)

where hj = (h1j , h2j , h3j , h4j )
T (j = 1, 2, 3, 4) is the column solution of linear systems (8)

and (9) with λ = λj , i.e.,

hj x
= λjJhj + Phj , (40)

hj t
=

3∑
k=0

λ3−k
j Vkhj . (41)

In order to hold the above reduction and constraints, λj and hj have to satisfy certain
relationship. The representations of the linear problems associated with the self-focusing and
self-defocusing two-component mKdV equations described in the previous section allow us
to construct the form of H.

Proposition 1. The self-focusing two-component mKdV equations:
Let

(h1, h2) =

⎛⎜⎜⎝
h11 h21

h21 −h11

h31 h41

h41 −h31

⎞⎟⎟⎠
is a vector solution of linear systems (8) and (9) with λ = λ1, then

(h3, h4) =

⎛⎜⎜⎝
h31 h41

−h41 h31

−h11 −h21

h21 −h11

⎞⎟⎟⎠
is also a vector solution of linear systems (8) and (9) corresponding to λ = −λ1.

6
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Hence, the matrix S is given for the self-focusing two-component mKdV equations (24)

S = H�H−1, H =

⎛⎜⎜⎝
h11 h21 h31 h41

h21 −h11 −h41 h31

h31 h41 −h11 −h21

h41 −h31 h21 −h11

⎞⎟⎟⎠ , � = diag(λ1, λ1,−λ1,−λ1).

(42)

Proposition 2. The self-defocusing two-component mKdV equations:
Let

(h1, h2) =

⎛⎜⎜⎝
h11 h21

h21 −h11

h31 h41

h41 −h31

⎞⎟⎟⎠
is a vector solution of linear systems (8) and (9) with λ = λ1, then

(h3, h4) =

⎛⎜⎜⎝
h31 h41

−h41 h31

h11 h21

−h21 h11

⎞⎟⎟⎠
is also a vector solution of linear systems (8) and (9) corresponding to λ = −λ1.

For the self-defocusing case, S can be written as

S = H�H−1, H =

⎛⎜⎜⎝
h11 h21 h31 h41

h21 −h11 −h41 h31

h31 h41 h11 h21

h41 −h31 −h21 h11

⎞⎟⎟⎠ , � = diag(λ1, λ1,−λ1,−λ1).

(43)

Next we shall prove that the above matrix S satisfies expressions (32)–(34) together with
expressions (36)–(37). By using equations (40) and (41), we take the derivatives of H with
respect to x and t,

Hx = JH� + PH, (44)

Ht =
3∑

k=0

VjH�3−j , (45)

and further obtain

Sx = [HxH
−1, S] = [JS + P, S], (46)

St = [HtH
−1, S] =

[
3∑

k=0

VkS
3−k, S

]
. (47)

Obviously, the above expressions (46) and (47) exactly equal expressions (36) and (37),
respectively. With the help of propositions 1 and 2, using the relation (35) together with
expressions (42) and (43), one can find that expressions (32)–(34) are all automatically
satisfied. To this stage, we have verified that the Darboux transformation (26) preserves the
forms of the Lax pairs associated with the self-focusing and self-defocusing two-component
mKdV equations, and keeps the reduction and constraints involved before. Thus, from
expression (35), the relationship between the new and original potentials can be established.

7
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4. n-times iteration of the Darboux transformation

The Darboux matrix D = λI − S discussed above is only one degree polynomial about λ. By
applying the Darboux transformation successively, we can construct the n-times iteration of
the Darboux transformation. Let us take hj (j = 1, 2, . . . , 4n) as 4n fundamental solutions of
linear systems (8) and (9) corresponding to eigenvalue parameters λ = λj (j = 1, 2, . . . , 4n).
According to the knowledge about the Darboux transformation of higher degree [25, 26], the
n-times iteration of the Darboux matrix is in the form of

Dn(x, t, λ) = λnI +
n∑

k=1

�kλ
n−k, (48)

which is the product of n Darboux transformation of degree one, namely,

Dn(x, t, λ) = (λI − Sn)(λI − Sn−1) · · · (λI − S1). (49)

Hence, from expressions (48) and (49), it is found that

�1 = −(S1 + S2 + · · · + Sn). (50)

To this state, the n-times Darboux transformation for eigenfunction and potentials is
presented as follows:

�n =
(

λnI +
n∑

k=1

�kλ
n−k

)
�, (51)

Pn = P + [J, S1 + S2 + · · · + Sn] = P − [J, �1]. (52)

The following step is to compute out the matrix �1 in order to generate the new solutions
from expression (52). Because hj (j = 1, 2, . . . , 4n) is the column solution of linear systems
(8) and (9) with λ = λj , it satisfies the linear algebraic equations Dn(x, t, λj )hj = 0, i.e.,

n∑
k=1

�kλ
n−k
j hj = −λn

jhj , (j = 1, 2, . . . , 4n), (53)

which can be rewritten in a matrix form

(�1, �2, . . . , �n)Wn = −B, (54)

with

B = (
λn

1h1, λ
n
2h2, . . . , λ

n
4nh4n

)
, Wn =

⎛⎜⎜⎜⎝
λn−1

1 h1 λn−1
2 h2 · · · λn−1

4n h4n

λn−2
1 h1 λn−2

2 h2 · · · λn−2
4n h4n

...
...

. . .
...

h1 h2 · · · h4n

⎞⎟⎟⎟⎠ . (55)

With the use of the Cramer’s rule, �1 can be solved from the linear algebraic equations (54),

(�1)pq = −det M(p)
q

det Wn

, (1 � p, q � 4), (56)

where M
(p)
q can be got by replacing the qth row of Wn with the pth row of B. Therefore,

the potential formulae of n-times iterative Darboux transformation for the self-focusing and
self-defocusing two-component mKdV equations are expressed as

u
(n)
1 = u1 + 2i(�1)13 = u1 − 2i

det M(1)
3

det Wn

, (57)

u
(n)
2 = u2 + 2i(�1)14 = u2 − 2i

det M(1)
4

det Wn

. (58)

8
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5. Symbolic computation on the multi-soliton solutions

In what follows, applying the iterative algorithm of the Darboux transformation, we will
perform the symbolic computation to construct the multi-soliton solutions of the self-focusing
and self-defocusing two-component mKdV equations.

In order to generate the soliton solution, we take u1 = u2 = 0 as the seed solutions, and
solve the linear eigenvalue problems (8) and (9) with λ = iξ (ξ is an arbitrary real constant),
then get the basic solution

h =

⎛⎜⎜⎝
h11

h21

h31

h41

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
c11 eξx−4ξ 3t

c21 eξx−4ξ 3t

c31 e−ξx+4ξ 3t

c41 e−ξx+4ξ 3t

⎞⎟⎟⎟⎠ , (59)

where c11, c21, c31 and c41 are all arbitrary real constants.

5.1. The self-focusing two-component mKdV equations

According to proposition 1 and the once-iterated potential formulae (57) and (58), we can
derive the one-soliton solution of the self-focusing two-component mKdV equations (24), as
below

u
(1)
1 = 2ξ(c11c31 + c21c41)(

c2
11 + c2

21

)
eη/2

sech

[
2(4ξ 3t − ξx) +

η

2

]
, (60)

u
(1)
2 = 2ξ(c11c41 − c21c31)(

c2
11 + c2

21

)
eη/2

sech

[
2(4ξ 3t − ξx) +

η

2

]
, (61)

where eη = (
c2

31 + c2
41

)/(
c2

11 + c2
21

)
.

Adopting two sets of basic solutions (59), i.e., h(1) = (
h

(1)
11 , h

(1)
21 , h

(1)
31 , h

(1)
41

)T
and

h(2) = (
h

(2)
11 , h

(2)
21 , h

(2)
31 , h

(2)
41

)T
corresponding to the eigenvalues λ1 and λ2, respectively, the

two-soliton solutions can be generated from formulae (57) and (58)

u
(2)
1 = −2i

det M(1)
3

det W2
, (62)

u
(2)
2 = −2i

det M(1)
4

det W2
, (63)

with

M
(1)
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1h
(1)
11 λ1h

(1)
21 λ1h

(1)
31 λ1h

(1)
41 λ2h

(2)
11 λ2h

(2)
21 λ2h

(2)
31 λ2h

(2)
41

λ1h
(1)
21 −λ1h

(1)
11 −λ1h

(1)
41 λ1h

(1)
31 λ2h

(2)
21 −λ2h

(2)
11 −λ2h

(2)
41 λ2h

(2)
31

λ2
1h

(1)
11 λ2

1h
(1)
21 λ2

1h
(1)
31 λ2

1h
(1)
41 λ2

2h
(2)
11 λ2

2h
(2)
21 λ2

2h
(2)
31 λ2

2h
(2)
41

λ1h
(1)
41 −λ1h

(1)
31 λ1h

(1)
21 −λ1h

(1)
11 λ2h

(2)
41 −λ2h

(2)
31 λ2h

(2)
21 −λ2h

(2)
11

h
(1)
11 h

(1)
21 h

(1)
31 h

(1)
41 h

(2)
11 h

(2)
21 h

(2)
31 h

(2)
41

h
(1)
21 −h

(1)
11 −h

(1)
41 h

(1)
31 h

(2)
21 −h

(2)
11 −h

(2)
41 h

(2)
31

h
(1)
31 h

(1)
41 −h

(1)
11 −h

(1)
21 h

(2)
31 h

(2)
41 −h

(2)
11 −h

(2)
21

h
(1)
41 −h

(1)
31 h

(1)
21 −h

(1)
11 h

(2)
41 −h

(2)
31 h

(2)
21 −h

(2)
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(64)
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M
(1)
4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1h
(1)
11 λ1h

(1)
21 λ1h

(1)
31 λ1h

(1)
41 λ2h

(2)
11 λ2h

(2)
21 λ2h

(2)
31 λ2h

(2)
41

λ1h
(1)
21 −λ1h

(1)
11 −λ1h

(1)
41 λ1h

(1)
31 λ2h

(2)
21 −λ2h

(2)
11 −λ2h

(2)
41 λ2h

(2)
31

λ1h
(1)
31 λ1h

(1)
41 −λ1h

(1)
11 −λ1h

(1)
21 λ2h

(2)
31 λ2h

(2)
41 −λ2h

(2)
11 −λ2h

(2)
21

λ2
1h

(1)
11 λ2

1h
(1)
21 λ2

1h
(1)
31 λ2

1h
(1)
41 λ2

2h
(2)
11 λ2

2h
(2)
21 λ2

2h
(2)
31 λ2

2h
(2)
41

h
(1)
11 h

(1)
21 h

(1)
31 h

(1)
41 h

(2)
11 h

(2)
21 h

(2)
31 h

(2)
41

h
(1)
21 −h

(1)
11 −h

(1)
41 h

(1)
31 h

(2)
21 −h

(2)
11 −h

(2)
41 h

(2)
31

h
(1)
31 h

(1)
41 −h

(1)
11 −h

(1)
21 h

(2)
31 h

(2)
41 −h

(2)
11 −h

(2)
21

h
(1)
41 −h

(1)
31 h

(1)
21 −h

(1)
11 h

(2)
41 −h

(2)
31 h

(2)
21 −h

(2)
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(65)

W2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1h
(1)
11 λ1h

(1)
21 λ1h

(1)
31 λ1h

(1)
41 λ2h

(2)
11 λ2h

(2)
21 λ2h

(2)
31 λ2h

(2)
41

λ1h
(1)
21 −λ1h

(1)
11 −λ1h

(1)
41 λ1h

(1)
31 λ2h

(2)
21 −λ2h

(2)
11 −λ2h

(2)
41 λ2h

(2)
31

λ1h
(1)
31 λ1h

(1)
41 −λ1h

(1)
11 −λ1h

(1)
21 λ2h

(2)
31 λ2h

(2)
41 −λ2h

(2)
11 −λ2h

(2)
21

λ1h
(1)
41 −λ1h

(1)
31 λ1h

(1)
21 −λ1h

(1)
11 λ2h

(2)
41 −λ2h

(2)
31 λ2h

(2)
21 −λ2h

(2)
11

h
(1)
11 h

(1)
21 h

(1)
31 h

(1)
41 h

(2)
11 h

(2)
21 h

(2)
31 h

(2)
41

h
(1)
21 −h

(1)
11 −h

(1)
41 h

(1)
31 h

(2)
21 −h

(2)
11 −h

(2)
41 h

(2)
31

h
(1)
31 h

(1)
41 −h

(1)
11 −h

(1)
21 h

(2)
31 h

(2)
41 −h

(2)
11 −h

(2)
21

h
(1)
41 −h

(1)
31 h

(1)
21 −h

(1)
11 h

(2)
41 −h

(2)
31 h

(2)
21 −h

(2)
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(66)

5.2. The self-defocusing two-component mKdV equations

Similarly, following the procedure in section 5.1, we can derive the once-iterated exact
analytical solutions of the self-defocusing two-component mKdV equations (25)

u
(1)
1 = 2ξ(c11c31 + c21c41)

−(
c2

11 + c2
21

)
eη/2

csch

[
−2(4ξ 3t − ξx) − η

2

]
, (67)

u
(1)
2 = 2ξ(c11c41 − c21c31)

−(
c2

11 + c2
21

)
eη/2

csch

[
−2(4ξ 3t − ξx) − η

2

]
, (68)

and twice-iterated solutions

u
(2)
1 = −2i

det M(1)
3

det W2
, (69)

u
(2)
2 = −2i

det M(1)
4

det W2
, (70)
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with

M
(1)
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1h
(1)
11 λ1h

(1)
21 λ1h

(1)
31 λ1h

(1)
41 λ2h

(2)
11 λ2h

(2)
21 λ2h

(2)
31 λ2h

(2)
41

λ1h
(1)
21 −λ1h

(1)
11 −λ1h

(1)
41 λ1h

(1)
31 λ2h

(2)
21 −λ2h

(2)
11 −λ2h

(2)
41 λ2h

(2)
31

λ2
1h

(1)
11 λ2

1h
(1)
21 λ2

1h
(1)
31 λ2

1h
(1)
41 λ2

2h
(2)
11 λ2

2h
(2)
21 λ2

2h
(2)
31 λ2

2h
(2)
41

λ1h
(1)
41 −λ1h

(1)
31 −λ1h

(1)
21 λ1h

(1)
11 λ2h

(2)
41 −λ2h

(2)
31 −λ2h

(2)
21 λ2h

(2)
11

h
(1)
11 h

(1)
21 h

(1)
31 h

(1)
41 h

(2)
11 h

(2)
21 h

(2)
31 h

(2)
41

h
(1)
21 −h

(1)
11 −h

(1)
41 h

(1)
31 h

(2)
21 −h

(2)
11 −h

(2)
41 h

(2)
31

h
(1)
31 h

(1)
41 h

(1)
11 h

(1)
21 h

(2)
31 h

(2)
41 h

(2)
11 h

(2)
21

h
(1)
41 −h

(1)
31 −h

(1)
21 h

(1)
11 h

(2)
41 −h

(2)
31 −h

(2)
21 h

(2)
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(71)

M
(1)
4 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1h
(1)
11 λ1h

(1)
21 λ1h

(1)
31 λ1h

(1)
41 λ2h

(2)
11 λ2h

(2)
21 λ2h

(2)
31 λ2h

(2)
41

λ1h
(1)
21 −λ1h

(1)
11 −λ1h

(1)
41 λ1h

(1)
31 λ2h

(2)
21 −λ2h

(2)
11 −λ2h

(2)
41 λ2h

(2)
31

λ1h
(1)
31 λ1h

(1)
41 λ1h

(1)
11 λ1h

(1)
21 λ2h

(2)
31 λ2h

(2)
41 λ2h

(2)
11 λ2h

(2)
21

λ2
1h

(1)
11 λ2

1h
(1)
21 λ2

1h
(1)
31 λ2

1h
(1)
41 λ2

2h
(2)
11 λ2

2h
(2)
21 λ2

2h
(2)
31 λ2

2h
(2)
41

h
(1)
11 h

(1)
21 h

(1)
31 h

(1)
41 h

(2)
11 h

(2)
21 h

(2)
31 h

(2)
41

h
(1)
21 −h

(1)
11 −h

(1)
41 h

(1)
31 h

(2)
21 −h

(2)
11 −h

(2)
41 h

(2)
31

h
(1)
31 h

(1)
41 h

(1)
11 h

(1)
21 h

(2)
31 h

(2)
41 h

(2)
11 h

(2)
21

h
(1)
41 −h

(1)
31 −h

(1)
21 h

(1)
11 h

(2)
41 −h

(2)
31 −h

(2)
21 h

(2)
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (72)

W2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1h
(1)
11 λ1h

(1)
21 λ1h

(1)
31 λ1h

(1)
41 λ2h

(2)
11 λ2h

(2)
21 λ2h

(2)
31 λ2h

(2)
41

λ1h
(1)
21 −λ1h

(1)
11 −λ1h

(1)
41 λ1h

(1)
31 λ2h

(2)
21 −λ2h

(2)
11 −λ2h

(2)
41 λ2h

(2)
31

λ1h
(1)
31 λ1h

(1)
41 λ1h

(1)
11 λ1h

(1)
21 λ2h

(2)
31 λ2h

(2)
41 λ2h

(2)
11 λ2h

(2)
21

λ1h
(1)
41 −λ1h

(1)
31 −λ1h

(1)
21 λ1h

(1)
11 λ2h

(2)
41 −λ2h

(2)
31 −λ2h

(2)
21 λ2h

(2)
11

h
(1)
11 h

(1)
21 h

(1)
31 h

(1)
41 h

(2)
11 h

(2)
21 h

(2)
31 h

(2)
41

h
(1)
21 −h

(1)
11 −h

(1)
41 h

(1)
31 h

(2)
21 −h

(2)
11 −h

(2)
41 h

(2)
31

h
(1)
31 h

(1)
41 h

(1)
11 h

(1)
21 h

(2)
31 h

(2)
41 h

(2)
11 h

(2)
21

h
(1)
41 −h

(1)
31 −h

(1)
21 h

(1)
11 h

(2)
41 −h

(2)
31 −h

(2)
21 h

(2)
11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (73)

6. Conclusions

Recently, in soliton theory, many multi-component nonlinear partial differential equations
emerge from fluid mechanics, nonlinear optics, Bose–Einstein condensates and field theories.
Due to the tremendous significance of such dynamical multi-component models and of the
associated interest in physics and mathematics, it is necessary to investigate the notion of
integrability. The AKNS system has been proved to be an effective tool to find the Lax
pairs and verify the integrability of many one-component soliton equations. In this paper, we
have given a construction of Lax pair associated with the multi-component mKdV equations
by extending the 2 × 2 matrix AKNS to 2N × 2N situation. For the obtained Lax pair

11



J. Phys. A: Math. Theor. 41 (2008) 355210 H-Q Zhang et al

in terms of the block matrix, we have constructed the Darboux transformation of the self-
focusing and self-defocusing two-component mKdV equations as illustrated examples, and
presented the n-times iterative formula by applying the Darboux transformation successively.
Performing the symbolic computation on the iterative algorithm of Darboux transformation,
we have presented the multi-soliton solutions according to the zero background. Finally, for
the higher component mKdV equations, the corresponding Darboux transformation can also
be constructed through by following the procedure of two-component mKdV equations.
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